# **Making Lane Detection Efficient for Autonomous Model Cars** Anthony B Song\*, Riley Francis\*, Kanishk Tihaiya\*, Jiangwei Wang^, Shanglin Zhou^, Fei Miao^, Caiwen Ding^

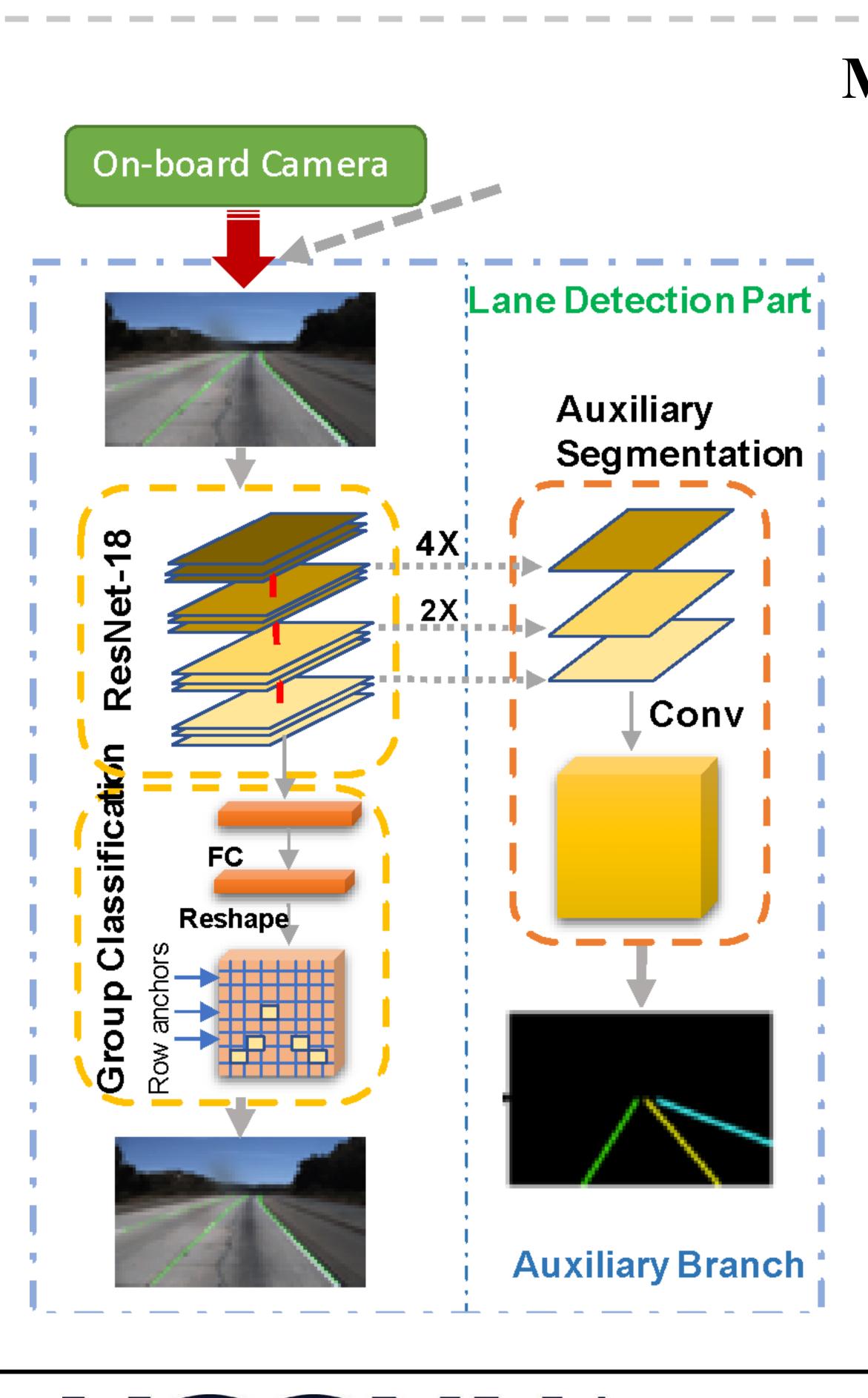
Presented at ACM/IEEE International Symposium on Low Power Electronics and Design, Boston, MA, 8/1-8/2/2022

### **Background and Motivation**

- •Lane detection is prerequisite and important
- Deep Learning models have explosive mo • DL models are time consuming and power • Embedded devices are light in storage and

## **Major Contributions**

- Created model cars with real-time Lane Detection
- Tested ADMM-based model compression to compress Ultra-Fast-Lane-Detection (a fast lane detection algorithm from ECCV2020)



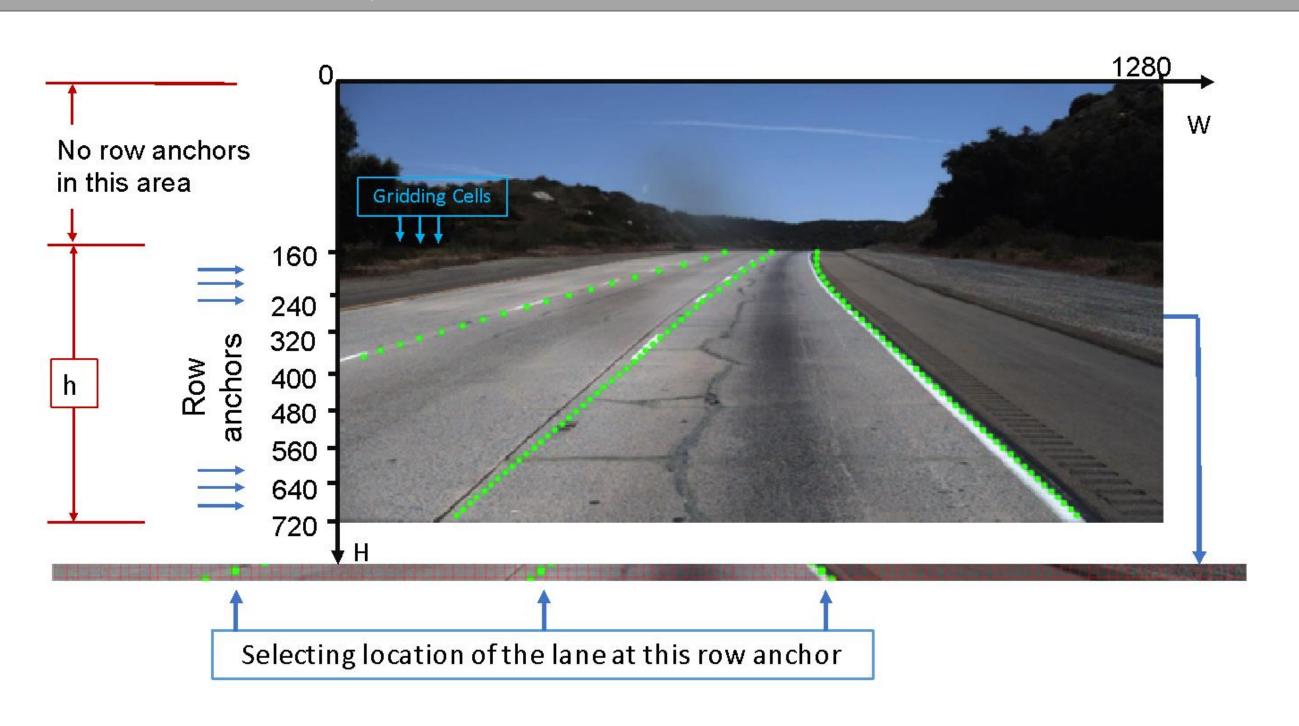
\* Edwin O Smith High School, ^ University of Connecticut

| nt for autonomous driving       |   | TABLE II:                |   |  |
|---------------------------------|---|--------------------------|---|--|
| odel sizes for embedded systems | _ | (%) Baseline<br>Accuracy | C |  |
| consuming<br>memory             |   | 95.8                     |   |  |
|                                 | _ |                          |   |  |

#### **Model Detail**

- Input: Camera RGB Images
- Output: Coordinate of lane markings
- Model: Ultra-Fast-Lane-Detection
- Different Image Processing Method
  - a) Decompose images to collection of rows (row anchors)
  - b) Divide row anchors into grids
  - c) Localize cells that contain lane mark over row anchors
- o Use ResNet-18 as backbone for global context detect
- o Use auxiliary branch to extract middle step feature maps
- o Address no-visual-clue problem in lane detection area

Convert traditional  $H \times W$  classification problems to classification problems on h rows, while each row is W- dimensional



**CONN** SCHOOL OF ENGINEERING

### Weight Pruning

| TABLE II: ADMM results and its Power Consumption on Lane-Detection-Model under different compression rates |               |           |             |            |                  |          |          |            |            |
|------------------------------------------------------------------------------------------------------------|---------------|-----------|-------------|------------|------------------|----------|----------|------------|------------|
| %) Baseline                                                                                                | Compression   | (%) After | (%) After   | (%) After  | (ms/img)Baseline | (ms/img) | (ms/img) | (W) Quadro | (W) Jetson |
| Accuracy                                                                                                   | Rate          | Training  | Hardpruning | Retraining | On TX2           | On TX2   | On CPU   | RTX 6000   | TX2        |
|                                                                                                            | $1.82 \times$ | 92.87     | 92.76       | 94.46      |                  | 29.46    | 150.24   | 114        | 4.494      |
| 95.8                                                                                                       | $2.54 \times$ | 93.59     | 93.50       | 94.38      | 67.34            | 25.05    | 149.47   | 93         | 3.848      |
|                                                                                                            | 4.21 	imes    | 93.83     | 90.66       | 94.20      |                  | 22.71    | 135.77   | 87         | 3.423      |

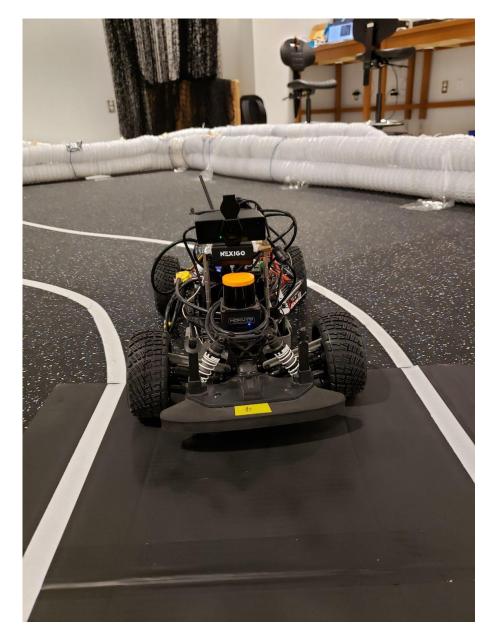
• Performance test: TuSimple lane detection benchmark • Method: Alternating Direction Method of Multipliers (ADMM)-based pruning

| • Loss Function: | $\begin{array}{c} \text{minimize} \\ \{\Theta_i\} \\ \text{subject to} \end{array}$ |
|------------------|-------------------------------------------------------------------------------------|
|                  | subject to                                                                          |

 $egin{aligned} &f\left(\left\{\mathbf{\Theta}_i\right\}_{i=1}^N
ight)+\sum_{i=1}^N g_i\left(\mathbf{P}_i
ight) \ &g_i(\mathbf{P}_i)=egin{cases} 0 & ext{if } ext{card}(\mathbf{P}_i)\leq t_i \ +\infty & ext{otherwise} \end{aligned}$ 

o Subproblem 1: Use Stochastic Gradient Descent to solve "Loss Function" of DNN o Subproblem 2: Solve "Cardinality" through Pruning by using Projections onto Discrete Subspace





Fully constructed autonomous car running on the testbed track







Zhou, S., Xie, M., Jin, Y., Miao, F., & Ding, C. (2021, April). An end-to-end multi-task object detection using embedded gpu in autonomous driving. In 2021 22nd International Symposium on Quality Electronic Design (ISQED) (pp. 122-128). IEEE. Qin, Z., Wang, H., & Li, X. (2020, August). Ultra fast structure-aware deep lane detection. In European Conference on Computer Vision (ECCV2020) (pp. 276-291) Springer, Cham.

Ultrafast Lane Detection tracking the lane represented in blue - in demonstration.