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Background and Motivation Weight Pruning
o] . ane detection 1S prerequisite and important for autonomous dI‘iViIlg TABLE II: ADMM results and its Power Consumption on Lane-Detection-Model under different compression rates
. . . (%) Baseline  Compression | (%) After (%) After (%) After | (ms/img)Baseline (ms/img) (ms/img) | (W) Quadro (W) Jetson
* Deep Learning models have explosive model sizes for embedded systems Accuracy Rate Training  Hardpruning  Retraining | On TX2 OnTX2 OnCPU | RTX6000  TX2
' ' - 1.82 92.87 92.76 94.46 29.46 150.24 114 4.494
o DL models are .t1me COTISUMING and power consuming 95.8 2 54x 93.59 93.50 94.38 67.34 25.05 149.47 93 3.848
o Embedded devices are light 1n storage and memory 4.21x 93.83 90.66 94.20 22.71 135.77 87 3.423
Major Contributions  Performance test: TUSlmple lane detection benchmark
e Created model cars with real-time Lane Detection * Method: Alternating Direction Method of Multipliers (ADMM)-based pruning
. Testeq ADMM-based mode} compre?ssion to compress Ultra-Fast-Lane- * .oss Function: mi%ﬁizﬂ f ({@i}il) + Ziil g: (P;) (B 0 if card(P;) < t;
Detection (a fast lane detection algorithm from ECCV2020) suhjéu:t 6 ©,—P,i=1...N I\ T\ Lo otherwise
Model Detail oSubproblem 1: Use Stochastic Gradient Descent to
» Input: Camera RGB Images solve “Loss Function” of DNN
SiBoardtamets ° - oSubproblem 2: Solve “Cardinality” through Prunin
* Output: Coordinate of lane markings pt <o nality S S
e Model: Ultra-Fast-Lane-Detection by using Projections onto Discrete Subspace

iLane Detection Part . .
| o Different Image Processing Method

a) Decompose 1images to collection of rows (row anchors)

Auxilia o . .
Seg me'r?ctation b) Divide row anchors into grids

c) Localize cells that contain lane mark over row anchors

|
|
|
|
|
|
- 4x, o Use ResNet-18 as backbone for global context detect
o 2X. o Use auxiliary branch to extract middle step feature maps Traxxas 4x4
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! car running on the testbed track represented in blue - in demonstration.
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