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Abstract—In recent years, autonomous driving has attracted
significant attention. There are many technical challenges in
creating such automation, such as quick recognition of objects in
the environment. A lane-detection system is a crucial component
of connected and autonomous vehicles. Although deep learning
models have been the state-of-the-art for lane detection from
camera footage collected by vehicle sensors, these models require
extensive computation and memory storage to detect and track
lanes, which restricts their applicability. We apply a model
compression technique to prune weights for a well-trained ResNet-
18 lane detector. The compressed model can run on a power-
efficient TX2 or FPGA equipping an F1Tenth model car. We will
demonstrate this system using our assembled model car and report
detection accuracy and efficiency using benchmark datasets.

I. PROJECT DESCRIPTION
A. Model Car Assembly

The F1Tenth car is an inexpensive test bed for validating
autonomous driving algorithms. The car was constructed using
a racing car chassis, motors, and sensors, which are linked
together to an NVIDIA Jetson TX2 low power module. Our
design uses the TX2 because it is suitable for small car chassis
and has a GPU that allows for the deployment of CNN based
object and lane detection. A VESC Module controls the motors
and a customized power board is connected to a lithium ion
battery to power the car. We hope this design achieves both
low power and fast processing.

The Robot Operating System (ROS) enables the car to make
decisions based upon data from the Hokuyo LIDAR and a
visual camera. ROS uses topics and nodes to link robotic
components together through processes called publishing and
subscribing.

Fig. 1. A fully assembled vehicle.

B. Lane Detection
Lane detection has a fundamental problem in that lane

markings are the main static component on the road that instruct

the vehicles to interactively and safely drive on the way. Deep
learning methods that are applied to lane detection usually treat
the problem as a semantic segmentation task [1]. VPGNet [2]
proposes a multi-task network guided by vanishing points for
lane and road marking detection. It tries to address inaccurate
detection under poor weather conditions. SCNN [3] tries to use
visual information more efficiently by aggregating information
from different dimensions via processing sliced features and
adding them together one by one. Other methods focus on real-
time running of the algorithm, such as SAD [4] that applies
attention distillation mechanism to improve the representation
learning of CNN-based lane detection models.

The lane detection model deals with camera images and
detects a precise coordinate for each lane markings. Method
were applied from Ultra-Fast-Lane-Detection [5]. Ultra-Fast-
Lane-Detection uses ResNet-18 as a backbone for global
context, aggregating auxiliary segmentation tasks that utilizes
multi-scale features by extracting middle step feature maps
to model local features. This method is not only light and
effective for embedded computing device, but also addresses
the no-visual-clue problem in the lane detection area. Meaning
if the lane markings are blurred, affected by light, or even
completely obscured, this Ultra-Fast-Lane-Detection method
can still accurately detect the lane markings.

Instead of segmenting every pixel of each lane, images are
decomposed to a collection of rows called row anchors. Lane
detection is redefined as finding a set containing positions
of lane markings in certain rows of the image, i.e., row-
based selection and classification based on global image. As
shown in Fig. 2, if images have size H × W , usually h
row anchors are selected. Each row anchor is then divided
into many grids/cells. The location of lanes can be converted
to localize certain cells over these row anchors. Comparing
with traditional segmentation approaches that need to deal with
H×W classification problems, Ultra-Fast-Lane-Detection only
needs to deal with classification problems on h rows. The
only exception being that the classification on each row is W -
dimensional. It simplifies the original H × W classification
problems to only h classification problems. Generally, h is
much smaller than the image height H .

To handle challenging scenarios such as severe occlusion and
extreme lighting conditions, Ultra-Fast-Lane-Detection uses
whole images as a receptive field to maintain global features.
Contextual information from other parts of the image can
be utilized. Auxiliary segmentation learns from prior layers’
feature maps, so information like shape and direction of lanes
can be learned and leveraged in the main classification task.

Evaluation metrics for lane detection tasks under individual
data sets are distinctly discrete. Accuracy is sometimes used
as a percentage of the correctly predicted number of lane
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Fig. 2. Illustration of row anchors and decomposition of lanes. Row anchors
are predefined as horizontally selecting rows in the images. Each lane marking
is decomposed into grid cells in row anchors.

points [6]. F1 = 2×Precision×Recall
Precision+Recall is another criteria [3].

C. Weight Pruning to Speed Up Processing

Pruning 
neurons

Fig. 3. Illustration of weight pruning for DNNs. Left: network before pruning,
right: network after pruning, removing several neurons and synapses [7].

Many investigations have shown that there exists redundancy
in DNN model parameters [8]–[10]. As shown in Fig. 3,
effective model compression with negligible accuracy loss can
be achieved using weight pruning methods. One fundamental
work is [8], that uses a three-step method prunes redun-
dant connections in DNNs. This work reduces 9× number
of parameters in AlexNet on the ImageNet dataset without
accuracy degradation. However, indices are needed to locate
which weight to pruning. This is not friendly in hardware
implementations for low-performance improvement [11]. This
problem is partially addressed by several works [12], [13].
Energy efficiency-aware pruning method [14], [15] facilitates
energy-efficient hardware implementations [16], allowing for
certain accuracy degradation, and structured sparsity learning
technique is proposed for irregular network structure after
pruning.

Processing time of 3D object detection using PointPillars is
significantly longer (11.16×) than lane detection using Ultra-
Fast-Lane-Detection. To synchronously obtain the neighbouring
vehicles’ location and lane markings’ information, we adopt
Alternating Direction Method of Multipliers (ADMM)-based
weight pruning technique [17], [18] on PointPillars network to
reduce its running time.

If we consider a general N -layer DNN with loss function
f
(
{Θi}Ni=1), the overall problem of DNN weight pruning is

minimizing this loss function subject to ith layer’s weight
belongs to {Θi | card (supp (Θi)) ≤ ti}, where ti is desired
numbers of non-zero weights. We can then use indicator
function and incorporate auxiliary variables to re-formulate the
loss function to Eq. 1 as

minimize
{Θi}

f
(
{Θi}Ni=1

)
+
∑N

i=1 gi (Pi)

subject to Θi = Pi, i = 1, . . . , N
(1)

Eq. 1 can then be decomposed into two sub-problems through
application of the augmented Lagrangian [18], and can be
solved iteratively until convergence.

Euclidean projection is performed during training to guaran-
tee most weights in each layer are non-zero. Then zero-weights
are masked and the network is retrained until converge.

D. Evaluation Metrics
We will study the performance of our solutions (i) from the

application perspective, i.e., images/s, and (ii) from the system
point of view with respect to latency (s), throughput (GFLOPS),
and energy-efficiency/power (W). An environment will be setup
for the F1TENTH cars that have implemented ultra fast lane
detection. We also want to measure the lane detection accuracy.
We will explore the trade-off of accuracy and energy efficiency.
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